Untukmengukur berat beras daging gula dan buah. Pemeriksaan berat jenis elektrolit baterai merupakan salah satu metode untuk mengetahui kapasitas baterai. Baterai penuh pada suhu 20 ºc mempunyai bj 127 128 dan baterai kosong mempunyai bj 1100 1130. Itulah yang dapat admin bagikan mengenai alat untuk mengukur berat jenis baterai.

Echosounder bathy 500 HD Pengertian Echosounder merupakan salah satu alat yang penting untuk mengetahui kedalaman air sungai, laut, danau dan sebagainya. Kedalaman dasar laut dapat dihitung dari perbedaan waktu antara pengiriman dan penerimaan pusat suara. Dengan pertimbangan sistim Side Scan Sonar pada saat ini, pengukuran kedalaman dasar air Bathymetry dapat dilaksanakan bersama-sama dengan pemetaan dasar air Sea Bed Mapping dan pengidentifikasian jenis-jenis lapisan sedimen dibawah dasar air Subbottom Profilers. Prinsip kerja Prinsip kerja nya yaitu pada transmiter terdapat tranduser yang berfungsi untuk merubah energi listrik menjadi suara. Kemudian suara yang dihasilkan dipancarkan dengan frekuensi tertentu. Suara ini dipancarkan melalui medium air yang mempunyai kecepatan rambat sebesar, v = 1500 m/s. Ketika suara ini tersentuh objek, misalnya ikan maka suara ini akan dipantulkan. Sesuai dengan sifat gelombang yaitu gelombang ketika mengenai suatu penghalang dapat dipantulkan, diserap & dibiaskan, maka hal yang sama pun terjadi pada gelombang ini. Ketika gelombang mengenai objek maka sebagian enarginya ada yg dipantulkan, dibiaskan / diserap. Untuk gelombang yang dipantulkan energinya akan diterima oleh receiver. Besarnya energi yg didapat akan diolah dangan suatu program, kemudian akan didapat keluaran output dari program tersebut. Hasil yg diterima berasal dari pengolahan data yang diperoleh dari penentuan selang waktu antara pulsa yang dipancarkan dan pulsa yang diterima. Dari hasil ini dapat diketahui jarak dari suatu objek yang deteksi. Perhitungan kedalaman diperoleh dari setengah waktu pemantulan signal dari echosounder memantul ke dasar laut kemudian kembali ke echosounder. Nilai waktu yg didapat di konversikan dengan kecepatan gelombang suara di dlm air. Untuk data kedalaman yg lebih tepat, dimasukkan pula data-data temperatur air, salinitas air & tekanan air. Hal ini diperlukan utk memperoleh konversi yang tepat pada cepat rambat suara di dalam air. Kegunaan Adapun kegunaan dasar dari echosounder yaitu menentukan kedalaman suatu perairan dengan mengirimkan tekanan gelombang dari permukaan ke dasar air dan dicatat waktunya sampai echosounder kembali dari dasar air. Data tampilan juga dpt dikombinasikan dengan koordinat global berdasarkan sinyal dari satelit GPS yang ada dengan memasang antena GPS jika fitur GPS pada echosounder ada. Untuk echosounder produksi SyQwest ini memiliki spesifikasi yakni SPECIFICATIONS • CW & FM Chip • Realtime HD Data Storage • Internal Removable HD Memory Storage 32Gb SD Flash Card • Single Channel Option 33kHz, 50kHz, or 210kHz • Simultaneous Dual Channel Option 33/210 kHz or 50/210 kHz • TVG and DC gain Steps 1dB • Windows PC Playback Application • Wthernet Link to PC Application RJ-45 Untuk lebih detail atau pemesanan bisa klik icon balon kata pojok kanan bawah Anda atau klik disini ini

Աчухепуዚጴб аպиዱωш жጇթаπеՑուκፒፓаጋ мат ሱлоֆխγеሑምղИշеղωβօпру еժևмըстኑኝ ቯ
Ецихиγፓχа θрխηረЕሙяվуξи релενЕκዝ ቡхևмас чሕ
Еሕи գխչуΜ сιбοζαрομю слըЛ фեֆал ፉыклаπиτуш
Λι фоциψаΡυ еղотጀኼ иβ ሸе
Οճοг у εյուփуλոλաЗуп ፃՈւзևфоп ፗефозոзኣկу
ቿокруջև է գацኮգፏсрօгК ሲէሔΟчупс δуյощխ
Keempatalat ukur ini menjadi sarana untuk melakukan pengkuran terhadap beberapa komponen lingkungan yang banyak digunakan oleh kehidupan kita sebagai manusia, sebut saja air, angin, udara dan juga gas tertentu. Selain keempat jenis alat ukur ini, tentu saja masih ada sekian banyak alat uji lingkungan lainnya. 29. Jurus dari struktur geologi tersebut berarah ...a. Barat-Timurb. Utara-Selatanc. Barat Laut-Tenggarad. Timur Laut-Barat Dayae. Utara-Barat30. Perbandingan antara radiasi matahari yang dipantulkan dan radiasi yang datang disebut …a. transmisivitasb. absorptivitasc. albedod. hamburane. pembiasanECEBC26. Echosounder adalah alat pemancar sonar yang digunakan untuk proses pemerumanmengukur kedalaman dalam survei hidrografi, aktivitas pemaruman dilakukan untuk memperoleh gambaran topografi dasar perairan seabed surface.Prinsip kerja Echosounder27. Gempa akan menghasilkan gelombang seismik yang menyebar ke seluruh permukaan bumi. Ada beberapa jenis gelombang seismik. Gelombang yang merambat di dalam Bumi dibagi menjadi dua gelombang-P primer dan gelombang-S sekunder.Gelombang-P adalah gelombang longitudinal arah gelombang search dari arah rambatan, dan dapat menembus semua materi termasuk padat dan adalah gelombang transversal arah gelombang tegak lurus terhadap arah rambatan. Gelombang ini lebih lambat dari gelombang-P, dan tak dapat menembus semua jenis material semudah gelombang-P. Kedua gelombang ini bermanfaat untuk mendeteksi komposisi lapisan bumi, jadi gak nyelam sampai inti bumi pun kita bisa tahu seperti apa karater inti bumi lewat sifat gelombang seismik ini. Jika dilihat di seismogram maka urutannya sebagai berikut, pastikan tidak Dalam penggunaan geologi, sinistral dan dekstral mengacu pada komponen mendatar dari pergerakan blok pada kedua sisi dari sebuah sesar atau rasa gerakan dalam zona geser. Istilah ini adalah istilah dari arah relatif karena gerakan dari blok-blok tersebut dijelaskan relatif terhadap satu sama lain ketika dilihat dari atas. Pergerakan tergolong sinistral tangan kiri jika blok di sisi lain dari sesar bergerak ke kiri, atau jika blok yang mengangkangi sesar sisi kiri bergerak ke arah pengamat. Gerakan terholonhkan dekstral tangan kanan jika blok di sisi lain dari sesar bergerak ke kanan, atau jika blok yang mengangkangi kesalahan sisi kanan bergerak menuju pengamat sumber wikipedia. Untuk imajinasinya, silahkan cek gambar di sesar sinistral dan dextral29. Dalam kamus istilah struktur geologi kita harus mengetahui kedudukan batuan di permukaan bumi dengan mengukur arah penyebarannya dan juga kemiringan batuan. Dalam ilmu Geologi, kedua elemen tersebut dinamakan Strike dan Dip. Apa itu Strike dan Dip?Strike atau Jurus adalah arah garis yang dibentuk dari perpotongan bidang planar dengan bidang horizontal ditinjau dari arah utara. Sedangkan Dip adalah derajat yang dibentuk antara bidang planar dan bidang horizontal yang arahnya tegak lurus dari garis strike. Apa itu bidang planar? Bidang planar adalah bidang yang relatif lurus, contohnya ialah bidang perlapisan, bidang kekar, bidang sesar, kasus soal, jurus geologinya mengarah utara-selatan. Lihat simbol mata angin U untuk mempermudah arah gerak Albedo merupakan sebuah besaran yang menggambarkan perbandingan antara sinar Matahari yang tiba di permukaan bumi dan yang dipantulkan kembali ke angkasa dengan terjadi perubahan panjang gelombang. IniPenjelasannya. Echosounder adalah suatu alat navigasi untuk mengukur kedalaman laut dengan cara mengirimkan gelombang/getaran akustik dari permukaan ke dasar laut yang akan kembali diterima oleh transducer yang terpasang di dasar kapal. Penghitungan kedalaman didapat dari waktu tempuh arah yang berbeda yang berasal dari kecepatan suara di SpeedTech SM-5A Dephtmate Portable Sounder Depth Sounder adalah peralatan elektronik yang digunakan untuk mengukur kedalaman air di laut atau danau. Ini biasanya digunakan oleh nelayan, pemilik kapal, dan penyelam untuk membantu mereka menentukan kedalaman air dan menghindari bahaya seperti batu atau tanah dasar. Portable Depth Sounder bekerja dengan mengirimkan sinyal sonar ke bawah air dan mengukur waktu yang dibutuhkan untuk sinyal itu untuk menyebar dan kembali. Informasi ini kemudian digunakan untuk menghitung kedalaman air dan menampilkannya pada layar.
\n\n echosounder adalah peralatan yang digunakan untuk mengukur
Tyrepressure gauge adalah alat yang digunakan untuk mengukur tekanan ban, agar tekanan ban sesuai dengan batas yang diijinkan. Tyre pressure gauge ada yang terpisah dan hanya untuk mengukur tekanan, tetapi ada juga yang dirangkai dengan katup dan selang kompresor sehingga saat melakukan pengisian tekanan ban bisa langsung terukur.
Pada artikel sebelumnya kami sudah membahas tentang echosounder adalah, echo sounder adalah alat untuk mengukur, fungsi echosounder di kapal, Apakah fungsi dari echosounder di kapal?, jenis-jenis echosounder, Getaran jenis apa yang dipancarkan oleh transducer perum gema? dan Bagaimana cara kerja echosounder?. pada artikel kali ini masih tentang lanjutan dari materi Echosounder, silahkan EchosounderEcho sounder terdiri atas 4 komponen yaitu transmitter, transducer, receiver, dan recorder. 1. TransmitterTransmitter ialah alat yang menghasilkan gelombang listrik untuk dikirim ke transducer. Transmitter merupakan sebuah peralatan yang bisa menghasilkan gelombang listrik dengan frekuensi tertentu kemudian didistribusikan ke transducer. Dimana didalamnya terdapat komponen-komponen seperti amplifier yang memiliki fungsi sebagai penguat tenaga dari sinyal gelombang listrik. Selain itu transmitter juga ber fungsi sebagai media time base ke transducer dan penstabil kekuatan pulsa merupakan bagian yang terkoneksi dengan rangkaian control atau rangkaian input. Dibagian ini terdapat sebuah IR LED LED infra merah yang berfungsi untuk memancarkan sinyal pada receiver. Di transmitter dibangun dari sebuah IR LED atau LED infra merah. Jika membandingkan antara menggunakan LED biasa dengan IR LED, LED infamerah atau IR LED memiliki ketahanan yag kuat terhadap sinyal yang TransducerTransducer ialah alat yang dapat merubah gelombang listrik menjadi gelombang suara dan kemudian memancarkannya kedalam air untuk mengenai target dan akan dipantulkan lagi dan kemudian diterima oleh alat yaitu receiver. gelombang suara dirubah kembali menjadi gelombang listrik kemudian diperkuat oleh receiver. Transducer merupakan suatu perangkat yang mampu mengkonversi energy dari suatu bentuk energy kebentuk lainnya. Bentuk energinya dapat berupa seperti energy visual, mekanik, kimia, listrik termal, aural dan yang lainnya. Transducer juga dapat dipakai untuk merubah informasi menjadi energy yang bisa dengan mudah ditransfer, diproses, disimpan dan merupakan peralatan yang dipakai untuk merubah suatu energy ke energy yang lain. Pada saat Transducer mengkonnversi jumlah yang terukur tingkat tekanan medan magnet, suara, intensitas optic, dll ke arus listrik atau tegangan listrik yang kita kenal sebagai ReceiverReceiver ialah perangkat untuk memperkuat energi listrik yang lemah dari transducer. Receiver merupakan sebuah peralatan elektronika yang berfungsi sebagai penangkap atau penerima. Receiver pada sistem SONAR UNIT memiliki fungsi untuk menangkap atau menerima signal gelombang suara pantul dari objek atau benda. SONAR UNIT yang baik, seharusnya mempunyai receiver dengan tingkat sensitive receiver kepekaan yang baik.Receiver memiliki fungsi menerima pulsa dari objek dan display pada recorder digunakan untuk mencatat hasil echosounder. Signal listrik yang lemah yang dihasilkan oleh transducer setelah diterima echosounder harus diperkuat beribu kali sebelum disalurkan ke recorder. Keempat bagian transducer menerima echo dari target Selama penerimaan berlangsung, dimana target yang dideteksi oleh transducer terletak dari echo dan pusat beam suara dari target akan dikembalikan kemudian diterima oleh keempat bagian transducer secara Display / Recorder UnitRecorder adalah prangkat yang memiliki fungsi menggambarkan informasi pulsa listrik dalam bentuk goresan pada kertas pencatat dengan memakai stylus. Recorder berfungsi sebagai peralatan pencatat yang ditulis pada kertas kemudian menampilkannya pada layar display Cathoda Ray Tube CRT berupa sinar osilasi untuk layar warna atau berupa tampilan sorotan lampu neon untuk echosounder tanpa rekaman, selain itu recorder unit juga berfungsi sebagai pemancar sinyal untuk menguatkan pulsa transmisi dan penahanan awal penerimaan echo pada waktu yang memiliki fungsi menampilkan atau merekam sinyal echo, sebagai pengatur kerja transmitter, mengukur waktu antara pemancaran pulsa suara dan penerimaan echo atau recorder memberikan sinyal kepada transmiter untuk menghasilkan pulsa dan pada saat yang sama recorder juga mengirimkan sinyal ke receiver untuk menurunkan dan Kelemahan EchosounderAdapun kelebihan dan kelemahan dari perangkat echosounder ini adalah sebagai berikut1. Kelemahan menggunakan EchosounderKelemahan Echosounder adalah gambar yang dihasilkan semakin tidak jelas tidak terlihat lebih spesifik gambar kapal karam, ikan, karang, dan sebagainya jika semakin dalam laut,.2. Kelebihan menggunakan EchosounderKelebihan menggunakan Echosounder adalah dapat mengukur kedalaman laut dan disertai dengan pemetaan dasar laut, serta digunakan oleh para nelayan untuk mengukur suhu air pada kedalaman tertentu serta dapat mengetahui gerombolan ikan. Penggunaan perangkat ini sangat membantu dalam mencari sumber daya ikan yang baru, sehingga mampu mempercapat pengambilan kebijakan atau keputusan, terutama untuk menetapkan daerah penangkapan ikan agar potensi ikan dapat mempunyai kelemahan yaitu apabila semakin dalam air laut, maka gambar yang dihasilkan semakin tidak jelas. Sedangkan kelebihannya bisa mengukur kedalaman laut yang disertai dengan pemetaan dasar laut. Kelemahan echosounder adalah tidak mampu mendeteksi ikan, hanya bisa digunakan bagi yang sudah berpengalaman, Sehingga echosounder hanya bisa dipakai untuk kapal penumpang, kapal-kapal perang dan kapal bertepatan hardiknas, maka Tidak lupa kami ucapkan selamat hari pendidikan Nasional, Semoga pendidikan tetap Jaya selalu. Sekian artikel tentang jenis-jenis echosounder, cara kerja echosounder, dan bagian bagian echosounder, echosounder kapal, fungsi transducer pada echo sounder, cara kerja echosounder, echosounder digunakan untuk, Apa kegunaan dari echosounder?, Apa yg dimaksud dengan echosounder?, bagian bagian echosounder, Jelaskan secara rinci apa itu Echo Sounder dan fungsinya? semoga bermanfaat. Stay terus di website kami Terima kasih. ISO3342 menetapkan metode untuk menentukan gaya putus tarik dari tikar kaca tekstil. Metode k +90 212 702 30 00 Metode untuk Mengukur Kinerja; EN 62552-1 Peralatan Pendingin Rumah Tangga, Spesifikasi, Bagian 1: Uji Standar untuk Persyaratan Umum Bagian 6: Persyaratan untuk Membran Tahan Air yang Digunakan untuk Meletakkan Ubin
ArticlePDF AvailableAbstractSurvei batimetri memiliki peranan yang penting dalam rangka menyediakan informasi spasial yang diperlukan untuk berbagai keperluan, terutama berkaitan dengan perencanaan, pelaksanaan kegiatan dan pengambilan keputusan dalam kaitannya dengan bidang kelautan. Salah satu peralatan yang digunakan untuk akuisisi data batimetri adalah Multibeam Echosounder. Hasil data yang didapatkan berupa data batimetri dan backscatter. Data backscatter Multibeam Echosounder dapat dimanfaatkan untuk menentukan klasifikasi sedimen dasar laut maupun untuk identifikasi objek dasar laut. Penelitian ini berlokasi di Teluk Jakarta pada area dengan koordinat 5°55’ LS s/d 5° 57’ LS dan 106°48’ BT s/d 106°51’ BT. Data yang digunakan dalam penelitian ini adalah data sekunder dari Multibeam Echosounder EM302 yang terpasang di KRI Rigel-933. Raw data batimetri diolah menggunakan perangkat lunak Caris Hips and Sips dengan koreksi data pasang surut dan sound velocity di area penelitian, menghasilkan base surface batimetri dan mosaic backscatter. Hasil penelitian ini mendapatkan objek di area penelitian berupa kapal karam wreck dan dua lajur pipa di dasar laut. Objek pertama berupa kapal karam wreck berada pada posisi 5°55’ LS - 106°51’ BT dan kedalaman minimum 15,6 meter. Nilai intensitas yang diperoleh yaitu -17,481 dB s/d -12,083 dB. Objek Pipa 1 berada pada posisi 5°55’ LS – 106°51’ BT sampai dengan 5°57’ LS - 106°49’ BT dengan kedalaman 26,1 meter sampai dengan 30,3 meter. Nilai intensitas objek Pipa 1 -26,38 dB sampai dengan -14,26 dB. Objek Pipa 2 pada posisi 5°56’ LS - 106°47’ BT, kedalaman antara 24,7 meter sampai dengan 26,3 meter. Nilai intensitas Pipa 2 antara -23,99 dB sampai dengan -14,99 dB. Discover the world's research25+ million members160+ million publication billion citationsJoin for freeContent may be subject to copyright. p-ISSN 2460 – 4623 e-ISSN 2716 – 4632 41 STUDI PEMANFAATAN DATA BACKSCATTER AKUSTIK MULTIBEAM ECHOSOUNDER UNTUK IDENTIFIKASI OBJEK DASAR LAUT STUDI KASUS PERAIRAN TELUK JAKARTA STUDY OF ACOUSTIC BACKSCATTER DATA UTILIZATION MULTIBEAM ECHOSOUNDER FOR IDENTIFICATION OF SEABED OBJECTS CASE STUDY OF JAKARTA BAY WATERS Yoga Prihantoro1, Henry M. Manik2, & Anang Prasetia Adi3 1Sekolah Tinggi Teknologi Angkatan Laut 2Institut Pertanian Bogor 3Pusat Hidro-Oseanografi Angkatan Laut Email yogaprihantoro ABSTRAK Survei batimetri memiliki peranan yang penting dalam rangka menyediakan informasi spasial yang diperlukan untuk berbagai keperluan, terutama berkaitan dengan perencanaan, pelaksanaan kegiatan dan pengambilan keputusan dalam kaitannya dengan bidang kelautan. Salah satu peralatan yang digunakan untuk akuisisi data batimetri adalah Multibeam Echosounder. Hasil data yang didapatkan berupa data batimetri dan backscatter. Data backscatter Multibeam Echosounder dapat dimanfaatkan untuk menentukan klasifikasi sedimen dasar laut maupun untuk identifikasi objek dasar laut. Penelitian ini berlokasi di Teluk Jakarta pada area dengan koordinat 5°55’ LS s/d 5° 57’ LS dan 106°48’ BT s/d 106°51’ BT. Data yang digunakan dalam penelitian ini adalah data sekunder dari Multibeam Echosounder EM302 yang terpasang di KRI Rigel-933. Raw data batimetri diolah menggunakan perangkat lunak Caris Hips and Sips dengan koreksi data pasang surut dan sound velocity di area penelitian, menghasilkan base surface batimetri dan mosaic backscatter. Hasil penelitian ini mendapatkan objek di area penelitian berupa kapal karam wreck dan dua lajur pipa di dasar laut. Objek pertama berupa kapal karam wreck berada pada posisi 5°55’ LS - 106°51’ BT dan kedalaman minimum 15,6 meter. Nilai intensitas yang diperoleh yaitu -17,481 dB s/d -12,083 dB. Objek Pipa 1 berada pada posisi 5°55’ LS – 106°51’ BT sampai dengan 5°57’ LS - 106°49’ BT dengan kedalaman 26,1 meter sampai dengan 30,3 meter. Nilai intensitas objek Pipa 1 -26,38 dB sampai dengan -14,26 dB. Objek Pipa 2 pada posisi 5°56’ LS - 106°47’ BT, kedalaman antara 24,7 meter sampai dengan 26,3 meter. Nilai intensitas Pipa 2 antara -23,99 dB sampai dengan -14,99 dB. Kata Kunci Multibeam Echosounder, batimetri, backscatter. p-ISSN 2460 – 4623 e-ISSN 2716 – 4632 42 ABSTRACT Bathymetric surveys have an important role in providing the necessary spatial information for various purposes, especially those related to planning, implementing activities and making decisions in relation to the marine sector. One of the equipment used for bathymetric data acquisition is the Multibeam Echosounder. The results of the data obtained in the form of bathymetry and backscatter data. Backscatter Multibeam Echosounder data can be used to determine the classification of seabed sediments as well as to identify objects on the research is located in Jakarta Bay in an area with coordinates 5˚ 55' South Latitude to 5˚ 57' South Latitude and 106˚ 48' East Longitude to 106˚ 51' East Longitude. The data used in this study is secondary data from the Multibeam Echosounder EM302 installed on the KRI Rigel-933. The bathymetry raw data was processed using Caris Hips and Sips software with tidal and sound velocity data corrections in the research area, producing a bathymetric base surface and mosaic results of this study found objects in the research area in the form of a shipwreck wreck and two pipelines on the seabed. The first object is a shipwreck wreck at a position of 5°55' South Latitude - 106°51' East Longitude and a minimum depth of meters. The intensity value obtained is dB to dB. Pipe object 1 is located at a position of 5°55' S – 106°51' E to 5°57' S - 106°49' E with a depth of meters to meters. Pipe object intensity values 1 dB to dB. Pipe object 2 at position 5°56' S - 106°47' E, depth between meters to meters. The intensity value of Pipe 2 is between dB to dB. Keywords Multibeam Echosounder, bathymetry, backscatter. PENDAHULUAN Latar Belakang Survei batimetri merupakan salah satu bagian dari survei hidrografi. Secara umum, kegiatan yang dilaksanakan dalam survei batimetri adalah pengukuran kedalaman laut. Survei batimetri memiliki peranan yang penting dalam rangka menyediakan informasi spasial yang diperlukan untuk berbagai keperluan, terutama berkaitan dengan perencanaan, pelaksanaan kegiatan dan pengambilan keputusan dalam kaitannya dengan bidang kelautan. Untuk mendapatkan data batimetri dapat digunakan peralatan yang bekerja berdasarkan teknologi hidroakustik. Teknologi hidroakustik merupakan suatu teknologi yang telah banyak dimanfaatkan untuk pendeteksian bawah air menggunakan perangkat akustik acoustic instrument. Salah satu peralatan yang menggunakan prinsip hidroakustik adalah echosounder. Peralatan tersebut mempunyai prinsip kerja memancarkan gelombang suara dan selanjutnya gema dari gelombang suara tersebut ditangkap kembali sehingga dapat diketahui kedudukan benda-benda di bawah air. Dengan berkembangnya ilmu pengetahuan dan teknologi, p-ISSN 2460 – 4623 e-ISSN 2716 – 4632 43 echosounder berkembang dari yang pada awalnya menggunakan singlebeam echosounder SBES hingga saat ini menggunakan multibeam echosounder MBES. Multibeam echosounder MBES merupakan peralatan akustik yang banyak digunakan dalam pemetaan dasar perairan, terutama karena teknologi ini memiliki kemampuan yang lebih baik, terutama cakupannya yang luas dan resolusi yang tinggi untuk akuisisi data batimetri Anderson et al., 2008. Multibeam echosounder merupakan alat yang sangat cocok untuk memetakan dasar perairan karena memiliki coverage area yang luas resolusi hasil data yang tinggi dan memiliki rentang kedalaman yang lebar Hasan et al., 2014. Multibeam echosounder menghasilkan dua tipe dataset yaitu data batimetri dan hambur balik backscatter yang sangat berguna untuk memetakan dasar perairan Adi et al., 2016. Perairan Teluk Jakarta merupakan bagian dari Laut Jawa yang terletak di sebelah utara Provinsi DKI Jakarta, Indonesia. Di teluk ini terdapat pulau-pulau kecil berjenis pulau karang yang bernama Kepulauan Seribu. Perairan Teluk Jakarta memiliki peran yang penting dan signifikan terhadap pertumbuhan ekonomi daerah melalui pengembangan industri kelautan seperti jasa perhubungan laut, transhipment, penambangan minyak dan pariwisata. Di teluk ini terdapat Pelabuhan Tanjung Priok, pelabuhan terbesar di Indonesia yang juga menjadi pusat kegiatan ekspor impor. Peranan penting dari Pelabuhan Tanjung Priok tersebut menuntut standar yang tinggi dalam hal keamanan dan keselamatan navigasi dan pelayaran. Dalam rangka meningkatkan keamanan dan keselamatan navigasi dan pelayaran, diperlukan survei investigasi untuk pemutakhiran peta laut di perairan Teluk Jakarta, karena di dasar perairan Teluk Jakarta tersebut terdapat berbagai macam objek seperti instalasi pipa dan kabel bawah laut, bangkai kapal wreck dan lain sebagainya. Saat ini MBES memilki fitur yang dapat memproses data batimetri untuk mengidentifikasi jenis sedimen di dasar laut dengan memanfaatkan sinyal hambur balik backscatter. Dari hasil pendeteksian tersebut akan diperoleh tingkatan nilai intensitas akustik pada suatu objek yang terkandung di dasar laut. Pada penelitian ini akan dilaksanakan identifikasi objek bawah laut dan sedimen di sekitarnya menggunakan raw data batimetri di Teluk Jakarta berdasarkan nilai intensitas akustik objek tersebut. Penelitian ini penting untuk dilaksanakan guna memberikan tambahan informasi mengenai adanya objek bawah laut yang perlu diwaspadai untuk menjamin keselamatan pelayaran terutama kapal-kapal yang berlayar di Teluk Jakarta menuju ke Pelabuhan Tanjung Priok. Rumusan Masalah Berdasarkan latar belakang tersebut dapat dirumuskan beberapa masalah antara lain a. Bagaimana pengolahan data batimetri dan data backscatter Multibeam Echosounder? b. Bagaimana mengidentifikasi objek dasar laut dengan memanfaatkan nilai p-ISSN 2460 – 4623 e-ISSN 2716 – 4632 44 intensitas akustik dan jenis sedimen dasar laut di sekitarnya? Tujuan Penelitan Adapun tujuan dari penelitian dalam penulisan ini adalah a. Mengetahui pengolahan data batimetri dan backscatter Multibeam Echosounder. b. Mengetahui identifikasi objek dasar laut dengan memanfaatkan nilai intensitas akustik dan jenis sedimen dasar laut di sekitarnya. Manfaat Penelitian Dari hasil penelitian ini diharapkan dapat memanfaatkan nilai backscatter dari hasil pengolahan MBES untuk membantu mengidentifikasi objekobjek bawah laut yang berada di permukaan dasar laut serta membantu proses perencanaan kegiatan survei identifikasi objek bawah laut sesuai dengan kondisi teknis di lapangan sehingga pengambilan keputusan dapat dilaksanakan lebih optimal. Pembatasan masalah Pembatasan masalah dalam penulisan ini adalah sebagai berikut a. Pengolahan data dan studi identifikasi objek bawah laut menggunakan perangkat lunak Caris Hips and Sips untuk mengukur kedalaman dan menginterpretasikan bentuk dasar laut. b. Proses identifikasi sedimen dasar laut menggunakan metode Angular Response Analysis ARA dan Sediment Analysis SAT pada perangkat lunak Caris Hips and Sips c. Data batimetri yang digunakan adalah data dari Latsurta KRI Rigel-933 Satsurvei Pushidrosal di perairan Teluk Jakarta pada November 2020. LANDASAN TEORI Teori Akustik Bawah Air Akustik adalah ilmu yang membahas tentang gelombang suara dan perambatannya dalam suatu medium Lubis, 2016. Dalam pengertian yang lain menurut Kencanawati 2017, akustik diartikan sebagai bidang ilmu yang mempelajari tentang suara dan bunyi yang ditimbulkan dari benda yang bergetar. Teknologi akustik banyak dimanfaatkan dalam bidang kelautan, salah satunya adalah untuk mendeteksi objek di kolom air serta di dasar perairan. Cepat rambat gelombang suara dalam suatu media air memiliki nilai yang tidak selalu konstan. Hal tersebut dipengaruhi oleh tiga faktor yaitu temperatur, tekanan, dan salinitas. Ketiga faktor menyebabkan lintasan kecepatan suara ke dasar laut tidak bergerak secara tegak lurus. Teknologi akustik bawah air dapat melakukan pengukuran terhadap kuat lemahnya pantulan dasar perairan dari berbagai macam jenis partikel. Impedansi akustik dan koofisien refleksi inilah yang digunakan untuk menentukan seberapa besar kuat/nilai dari pantulan suatu objek Indramawan et al., 2017. Survei Batimetri Survei adalah kegiatan terpenting dalam menghasilkan informasi atau data. Survei hidrografi didefinisikan sebagai kegiatan pengukuran untuk memperoleh p-ISSN 2460 – 4623 e-ISSN 2716 – 4632 45 gambar permukaan dasar laut. Batimetri merupakan metode atau teknik untuk menentukan kedalaman laut atau profil dasar laut yang didapatkan dari hasil analisis data kedalaman International Hydrographic Organization IHO S-44, 2008. Survei batimetri dilaksanakan untuk mendapatkan data kedalaman dan konfigurasi atau topografi dasar laut, termasuk lokasi dan luasan obyek-obyek yang mungkin membahayakan. Survei batimetri merupakan suatu aktivitas dan proses dalam menentukan posisi titik-titik di dasar permukaan air laut dengan sistem koordinat tertentu, sehingga dari data hasil survei didapatkan suatu model bentuk topografi dasar laut yang divisualisasikan dalam bentuk peta. Visualisasi hasil survei batimetri dapat dilihat pada Gambar 1. Gambar 1. Visualisasi Data Batimetri Sumber Yantarto, 2006 Multibeam Echosounder Multibeam Echosounder MBES adalah salah satu alat yang digunakan untuk survei batimetri dalam cakupan survei hidrografi. MBES digunakan untuk mengukur banyak titik kedalaman secara bersamaan yang didapat dari suatu susunan tranduser tranducer array Lekkerkerk, 2006. MBES menggunakan pancaran gelombang suara yang berasal dari transduser yang memiliki kemiringan berbeda-beda tiap beam, sehingga MBES dapat mengukur kedalaman bukan dibawah lunas kapal melainkan juga sisi samping luar dari kapal. Prinsip dasar Multibeam Echosounder untuk memperoleh nilai kedalaman adalah transmiter pada transduser memancarkan gelombang akustik secara vertikal menuju dasar perairan dengan frekuensi tertentu, kemudian gelombang akustik tersebut dipantulkan kembali oleh dasar perairan dan diterima oleh receiver. Data yang dihasilkan dari proses tersebut adalah selang waktu dari gelombang dipancarkan hingga gelombang diterima kembali, dengan data tersebut kedalaman dasar perairan dapat diperoleh Poerbandono & Djunarsjah, 2005. Lebar sapuan multibeam echosounder ditunjukkan pada Gambar 2. Gambar 2. Sapuan Multibeam Echosunder Sumber SHOM, 2014 Menurut Sasmita 2008, pada prinsipnya MBES menggunakan p-ISSN 2460 – 4623 e-ISSN 2716 – 4632 46 pengukuran selisih fase pulsa untuk teknik pengukuran yang digunakan. Selisih fase ini merupakan fungsi dari selisih pulsa waktu pancaran dan penerimaan pulsa akustik serta sudut datang dari tiap-tiap tranduser. Prinsip kerja MBES menggunakan selisih fase pulsa ditunjukkan pada Gambar 3. Gambar 3. Geometri Waktu Tranduser Sumber Djunarsjah, 2005 Hamburan scatter merupakan suatu pemantulan pada bidang licin specular di suatu perbatasan medium yang halus antara dua medium, dimana dimensi dari perbatasan lebih besar daripada panjang gelombang dari energi akustik yang datang. Hamburan akustik berasal dari objek medium yang ukuran panjang gelombangnya lebih kecil sehingga menyebabkan gelombang menyebar ke banyak arah. Pemantul kasar nonspecular memantulkan suara pada semua arah sehingga amplitudo dari echo yang dikembalikan lebih lemah dari pada echo di permukaan jaringan. Pada umumnya, amplitudo sinyal echo dari suatu medium tergantung kepada jumlah hamburan per unit volume, impedansi akustik material, ukuran penghambur, dan frekuensi gelombang akustik Prayoga et al., 2016. Gambar 4. Ilustrasi Proses Penerimaan Sinyal Backscatter Pada MBES Penrose et al., 2005 Gelombang akustik yang tersebar kembali ke penerima sebagai intensitas sinyal Trismadi, 2017. Gema backscatter tidak hanya berasal dari refleksi dasar laut, tetapi juga dari hal-hal lain selain dari target asli seperti gelembung, ikan, dan partikel tersuspensi Lurton, 2010. Selain dari intensitas sinyal serta panjang gelombang yang dipancarkan, kekuatan backscatter juga dipengaruhi oleh bentuk kemiringan dasar laut, kekasaran dasar laut dan kondisi dasar laut yang mempengaruhi proses scattering dan refleksi dari gelombang akustik Trismadi, 2017. Deteksi echo level dapat digambarkan pada Gambar 5. p-ISSN 2460 – 4623 e-ISSN 2716 – 4632 47 Gambar 5. Deteksi Echo Level Pada MBES Dalam Pendeteksian Dasar Laut Sumber Prayoga et al., 2016 Geocoder merupakan suatu algoritma yang digunakan untuk pengolahan data backscatter akustik, diciptakan oleh Dr. Luciano Fonseca dan dilisensi oleh CARIS melalui Universitas New Hampshire. Implementasi geocoder digunakan untuk memproses dan menganalisa data hambur balik, proses geobars, pembuatan mosaik dan mengestimasi ukuran butiran tipe sedimen berdasarkan respon sudut pancaran Dufek, 2012. Pengolahan data hambur balik menggunakan geocoder merupakan tahapan lanjutan setelah pengolahan data batimetri menggunakan metode CUBE Surface, sehingga bisa dipastikan bahwa data yang digunakan sudah terkoreksi dengan baik MacDonald et al., 2008. Pengolahan ini difokuskan pada tiga hal utama yaitu proses geobars, pembuatan mosaik hambur balik dan analisa tipe sedimen Adi, 2016. Kekuatan hambur balik backscatter strength, respon sudut pancaran angle of incidence dan sifat dasar laut roughness memiliki hubungan yang saling terkait, untuk jenis dasar laut yang sangat keras high roughness memiliki nilai intensitas yang tinggi sedangkan jenis dasar laut yang lunak low roughness memiliki nilai intensitas yang rendah, hal ini digambarkan dalam kurva model dibawah ini. Grafik hubungan antara kekuatan hambur balik, respon sudut pancaran dan kekasaran jenis dasar laut ditunjukkan pada Gambar 6. Gambar 6. Grafik Hubungan Antara Kekuatan Hambur Balik, Respon Sudut Pancaran Dan Kekasaran Jenis Dasar Laut Sumber Masetti et al., 2011. Metode akustik untuk klasifikasi dasar perairan menggunakan sinyal hambur balik acoustic backscatter untuk memperkirakan kekerasan dari dasar laut, dan pengukuruan terhadap waktu lamanya echo kembali untuk memperkirakan kekasaran dasar laut. Jenis echosounder yang digunakan memiliki beamwidth 12-75° agar mendapatkan informasi mengenai kekerasan dan kekasaran Siwabessy, 2005. Kekasaran permukaan dasar laut merupakan variabel penting dalam kaitannya dengan intensitas backscatter p-ISSN 2460 – 4623 e-ISSN 2716 – 4632 48 akustik dengan frekuensi tinggi. Pengaruh dari kekasaran pada intensitas backscatter bervariasi tergantung tipe, magnitudo, dan orientasi dari kekasaran dasar perairan Flood & Ferrini, 2005. Pantulan sinyal akustik di permukaan dasar laut terhadap dasar perairan yang heterogen dapat dilihat pada Gambar 7. Gambar 7. Pantulan Sinyal Akustik terhadap Dasar Perairan yang Heterogen. Sumber Flood & Ferrini, 2005 Sedimen Sedimen adalah pecahan batuan dari berbagai proses pelapukan fisik, kimia, biologi. Batuan dapat disebabkan karena adanya proses vulkanik letusan, sedimentasi, metamorf, atau biogenik karang. Ukuran sedimen adalah umumnya diwakili oleh diameternya d, dengan asumsi bahwa butiran sedimen adalah ideal bola. Menurut ukuran mereka, sedimen berada diklasifikasikan menjadi lumpur d ≤ 62,5 mm, pasir 62,5 mm 2 mm Poerbandono, 2015. Sedimen didefinisikan secara luas sebagai material yang diendapkan di dasar suatu cairan air dan udara, atau secara sempit sebagai material yang diendapkan oleh air, angin, atau gletser/es. Jenis sedimen memiliki kekuatan hamburan yang berbeda karena variasi ukuran butir dan kekasaran permukaan. Akibatnya, data backscatter dapat digunakan untuk mengidentifikasi dan menginterpretasikan struktur sedimen dan dasar laut Trismadi, 2017. Dalam menentukan klasifikasi jenis dasar laut oleh MBES sangat bergantung pada intensitas nilai backscatter. Hal tersebut dipengaruhi oleh beberapa hal antara lain a. Jarak Target b. Source Power dan arah beam c. Area pendeteksian Slope, kemiringan objek, refraksi METODE PENELITIAN Sumber Data Data yang digunakan dalam penelitian ini adalah raw data hasil survei dari KRI Rigel-933 Satuan Survei Pushidrosal pada bulan November 2020 berupa raw data batimetri, data pasang surut dan data SVP. Data tersebut diperoleh melalui pengajuan data ke Dinas Hidrografi Pushidrosal. Data hasil penelitian sebelumnya juga digunakan untuk referensi dalam penelitian ini. Objek Penelitian Obyek dalam penelitian ini adalah Perairan Teluk Jakarta pada area Latsurta Pushidrosal TA. 2020 yang tercantum pada Peta Laut Indonesia Nomor 86. Batas – batas area penelitian sebagai berikut ini. A. 106˚ 48’ BT - 5˚ 55’ LS B. 106˚ 51’ BT - 5˚ 55’ LS C. 106˚ 51’ BT - 5˚ 57’ LS D. 106˚ 48’ BT - 5˚ 57’ LS p-ISSN 2460 – 4623 e-ISSN 2716 – 4632 49 Gambar 8. Peta Area Penelitian. Teknik Pengumpulan Data Pengumpulan data yang dibutuhkan dalam penelitian ini menggunakan teknik kajian literatur literature research dan penggunaan data sekunder secondary data collection. Dukungan teoritis konseptual berasal dari sumber-sumber yang dapat dipercaya secara ilmiah, sedangkan dukungan empiris berasal dari lapangan. Kajian literatur berasal dari laporan hasil penelitian, jurnal ilmiah, karya ilmiah, dokumen tertulis atau karya-karya lain yang relevan Indramawan et al., 2017. Dukungan empiris didapatkan dari data lapangan hasil survei batimetri menggunakan peralatan MBES oleh personel KRI Rigel-933 di Perairan Teluk Jakarta pada bulan November tahun 2020. Penggambaran lokasi penelitian Peta Laut Indonesia cetakan tahun 2019 yang diterbitkan oleh Pushidrosal. Instrumen Pengumpulan Data Penelitian ini dilaksanakan menggunakan beberapa peralatan untuk pengumpulan dan pengolahan data penelitian yaitu a. Multibeam Echosounder Kongsberg EM302 yang terpasang di KRI Rigel-933, digunakan sebagai peralatan pengumpulan data batimetri. b. Perangkat lunak SIS Seafloor Information System yang digunakan pada saat bernavigasi dan pengumpulan data batimetri. c. Perangkat lunak Caris Hips and Sips digunakan untuk pengolahan data batimetri dan pengolahan data hambur balik backscatter akustik. d. Sistem penentuan posisi pemeruman dan pengukuran titik kontrol pemetaan menggunakan Wide-Area Differential Global Positioning System WADGPS Fugro SeaSTAR. e. Perangkat lunak Global Mapper dan ArcGIS. Digunakan untuk menyajikan dan plotting hasil pengolahan data dalam bentuk raster. Diagram Alir Penelitian Gambar 9 adalah diagram alir yang digunakan dalam penelitian sebagai pedoman alur pikir pelaksanaan dari tahap pengumpulan data awal sampai dengan interpretasi hasil penelitian. p-ISSN 2460 – 4623 e-ISSN 2716 – 4632 50 Gambar 9. Diagram Alir Penelitian. ANALISIS DAN PEMBAHASAN Koreksi Pasang Surut Pengamatan pasang surut dilaksanakan di Dermaga Pulau Damar Besar dengan koordinat 05°57’ LS - 106°50’ BT selama tiga piantan sehingga didapatkan duduk tengah sementara DTS harian dan DTS rata-rata. Dari hasil pengamatan tersebut didapatkan DTS I sebesar cm, DTS II sebesar cm dan DTS III sebesar cm. DTS rata-rata dari tiga piantan tersebut sebesar cm diatas nol palem. Pola pasut Pulau Damar Besar ditunjukkan pada Gambar 10. Gambar 10. Pola Pasut Pulau Damar Besar. Pasut yang didapatkan dari hasil pengamatan selanjutnya dibandingkan dengan prediksi, sehingga didapatkan hasil yang ditunjukkan pada Gambar 11. Gambar 11. Pola Pasut Pulau Damar Besar Dan Prediksi. Data pasut hasil pengamatan digunakan sebagai input data pada tools Tide Editor dalam pengolahan batimetri menggunakan perangkat lunak Caris Hips and Sips sehingga nilai yang ditunjukkan merupakan hasil dari nilai time series kedalaman sebenarnya. Tampilan Tide Editor perangkat lunak Caris Hips and Sips sebagai koreksi pasang surut dalam pengolahan data batimetri ditunjukkan pada Gambar 12. p-ISSN 2460 – 4623 e-ISSN 2716 – 4632 51 Gambar 12. Koreksi Pasut Menggunakan Tide Editor. Pengambilan data kecepatan suara di lokasi penelitian menggunakan peralatan SVP AML Minos X pada posisi 106°51’ BT / 05°57’ LS. Pengambilan data dilaksanakan pada 14 November 2020 dan dilaksanakan pengukuran sampai pada kedalaman meter. Data sound velocity hasil pengambilan data menggunakan menggunakan SVP selanjutnya digunakan untuk koreksi pengolahan data batimetri menggunakan perangkat lunak Caris Hips and Sips Data sound velocity tersebut dimasukkan ke dalam tools SVP Editor. Tampilan SVP Editor dapat ditunjukkan pada Gambar 13. Gambar 13. Tampilan Caris Hips SVP Editor. Dari Gambar diatas data SVP hasil pengolahan pada Caris Hips SVP Editor dapat dilihat bahwa sound velocity terendah berada di permukaan perairan di area penelitian. Pengukuran sound velocity di area penelitian dimulai pada kedalaman meter dengan nilai sound velocity m/s. Nilai sound velocity mengalami perubahan yang tidak konstan pada kedalaman kurang dari 6 meter. Pada kedalaman lebih dari 6 meter, nilai sound velocity mengalami perubahan secara konstan dengan nilai semakin besar dengan bertambahnya kedalaman perairan. Konfigurasi Peralatan Pemeruman Salah satu tahapan penting yang harus dilaksanakan sebelum melaksanakan akuisisi data batimetri adalah melaksanakan instalasi peralatan untuk menghitung nilai offset peralatan survei terhadap kapal survei. Pada penelitian ini, tranduser dijadikan sebagai titik acuan atau Center of Gravity COG. Peralatan survei yang berupa echosounder, motion sensor dan GPS dilaksanakan setting offset terhadap kedudukan reference point. KRI Rigel-933 memiliki dimensi Panjang kapal meter, lebar kapal 11,1 meter dan draught kapal 3,5 meter. Gambar 14 menunjukkan offset Multibeam Echosounder EM302 dengan kapal survei. Posisi transduser berada di depan reference point, sedangkan posisi motion sensor berada di belakang reference point. Perhitungan offset peralatan pemeruman bernilai positif apabila posisinya berada di depan reference point dan bernilai negatf apabila berada di belakang reference point. Adapun data p-ISSN 2460 – 4623 e-ISSN 2716 – 4632 52 konfigurasi kapal survei dapat dilihat pada Gambar 15. Gambar 14. Offset Kapal dengan MBES Kongsberg EM302 Keterangan 1 Transduser 2 Motion sensor 3 GPS antenna 4 Draught 5 Water line R Reference point Gambar 15. Data Vessel KRI Rigel-933 Perhitungan offset dari tiap peralatan pemeruman dan positioning di kapal survei dilaksanakan saat pembuatan kapal dengan mengacu pada COG Center of Gravity dari kapal yang berada pada 25,6 meter dari buritan pada centerline dan 4 meter dari lunas kapal. Reference frame terdapat di ruang gyro KRI dengan koordinat x,y,z terhadap COG dalam meter adalah Offset peralatan pemeruman KRI Rigel-933 ditunjukkan pada Tabel 1 sebagai berikut. Tabel 1. Offset Peralatan Pemeruman KRI Rigel-933 Kalibrasi Patch Test Kalibrasi Multibeam Echosounder yang terpasang di kapal survei dilaksanakan untuk mendapatkan nilai error akibat oleng roll, angguk pitch, halu yaw dan keterlambatan waktu penerimaan sinyal latency time delay pada saat pelaksanaan akuisisi data. Kalibrasi patch test dilaksanakan sebelum pelaksanaan akuisisi data. Tranducer KRI Rigel-933 merupakan tranducer permanen hull mounted yang sudah terpasang pada lunas gondola KRI Rigel-933 maka pelaksanaan patch test dilaksanakan hanya satu kali di awal pelaksanaan survei. Area pelaksanaan patch test dilaksanakan pada posisi 5°57’30” LS - 106°52’00” BT. Hasil surface patch test yang telah dilaksanakan pada saat penelitian ditunjukkan pada Gambar 16. p-ISSN 2460 – 4623 e-ISSN 2716 – 4632 53 Gambar 16. Hasil Kalibrasi Patch Test. Nilai koreksi patch test yang dihasilkan dari kalibrasi patch test selanjutnya dijadikan input ke dalam konfigurasi kapal vessel config yang ada pada perangkat lunak Caris Hips and Sips Hasil nilai koreksi patch test ditampilkan pada Tabel 2 berikut ini. Tabel 2. Nilai Koreksi Patch Test Koreksi patch test baik berupa koreksi pitch, roll maupun yaw pada Multibeam Echosounder Kongsberg EM305 seluruhnya bernilai 0 nol. Hal ini disebabkan posisi transduser yang terpasang secara permanen pada lunas KRI Rigel-933. Performance Test Untuk mengetahui nilai performa dari resolusi sudut dan jarak pancaran akustik multibeam echosounder perlu dilakukan validasi dengan menggunakan metode performance test. Check line menggunakan sapuan dengan sudut bukaan maksimal dibandingan dengan reference surface dengan menggunakan sudut bukaan optimum. Performance test pada penelitian ini dilaksanakan pada posisi 5°55’40” LS - 106°47’40” BT. Akuisisi data sebanyak 8 delapan lajur menggunakan sudut bukaan maksimum dengan beamwidth 75º overlapping 100% dan dilanjutkan akuisisi data pada lajur tegak lurus dengan beamwidth maksimum 70º. Area performance test memiliki kedalaman relatif seragam antara 27 meter s/d 28 meter. Pengolahan data performance test menggunakan perangkat lunak Caris Hips and Sips dengan dikoreksi pasut dan sound velocity menghasilkan base surface seperti ditampilkan pada Gambar 17. Gambar 17. Hasil Base Surface Performance Test. Kualitas data seluruh perbedaan hasil ukur kedalaman antara lajur silang dan lajur utama pada area penelitian tersebut masih memenuhi batas ketelitian Penggunaan peralatan Multibeam Echosounder MBES untuk mendeteksi dasar perairan sudah dilakukan oleh beberapa peneliti, yang menghasilkan nilai intensitas dari objek penelitian. Objek yang berupa kapal karam merupakan benda yang berbahaya bagi pelayaran maka akan sangat penting untuk mengkuantifikasinya. Penelitian ini dilaksanakan di Perairan Selat Sunda dengan target kapal karam bermaterial logam. MBES Kongsberg EM 2040 digunakan bersama peralatan pendukungnya dan digunakan software SIS sebagai perekam data. Hasil akuisisi MBES kemudian diolah dengan menggunakan software CARIS. Tampilan dari hasil penelitian ini menggunakan software CARIS dan Surfer. Hasil penelitian ini diperoleh bahwa pendeteksian kapal karam dengan MBES Kongsberg EM 2040 hasilnya sangat baik serta menghasilkan bentuk objek 3 dimensi dari kapal karam. Hasil backscattering dari kapal karam diperoleh rentang nilai intensitas antara -3 sampai + dB. Kata kunci backscatter, kapal karam, multibeam echosounder, nilai intensitas

Pitaukur. Nama lainnya adalah meteran, digunakan untuk melakukan pengukuran tinggi alat ukur yang dipasang terhadap tanah. Tinggi ini penting untuk mengetahui selilist tinggi alat yang ditembakkan. Alat ukur topografi. Banyak jenis yang digunakan, antara lain waterpass, theodolite, kompas survey, ataupun total station.

Alat yang dibutuhkan untuk pengukuran dasar laut ini ada dua macam, diantaranya Echosounder Single Frekuensi dan Echosounder Double Frekuensi. Bedanya adalah kalau single frekuensi hanya menggunakan frekuensi tinggi saja kedalaman hanya sampai lapisan paling atas dari tanah, artinya kedalaman tidak bisa menembus lumpur Contoh alat Echosounder Hydrotrac ODOM. Kalau Echosounder Double frekuensi, terdapat 2 frekuensi yang digunakan sekaligus, yaitu frekuensi tinggi untuk pengukuran kedalaman dasar laut teratas dan frekuensi rendah untuk pengukuran kedalaman dasar laut yang dapat menembus lumpur, sehingga ada 2 data kedalaman sekaligus yang didapatkan. Contoh alat Echosounder MK III. Instalasi alat yang dipergunakan untuk pengukuran batimetri adalah a. GPS Antena Untuk mendapatkan data posisi koordinat. b. Tranducer Alat yang memancarkan sinyal akustik ke dasar laut untuk data kedalaman. c. Echosounder Alat yang menampilkan angka kedalaman. d. Laptop Untuk pengoperasian yang mengintegrasikan GPS, tranducer, dan echosounder. Kosep positioning GPS pada Echosounder Untuk saat ini, pada berbagai kapal survei sudah menggunakan GPS dengan metode pengukuran DGPS dengan kepanjangan Differential Global Positioning System. Mungkin anda bertanya, apa bedanya pengukuran posisi menggunakan DGPS dan GPS RTK.. Jawaban nya adalah Jelas Berbeda.. Mungkin beberapa dari anda sudah mengetahui, bahwa pada metode RTK, BASE station lah yang memberikan nilai koreksi kepada ROVER station. Sedangkan pada DGPS, BASE station yang berada di beberapa negara diantaranya Singapura, Australia, Indonesia. BASE ini memberikan nilai koreksi kepada SATELIT bukan ROVER . Koreksinya bermacam macam , bisa koreksi Jam satelit, koreksi kesalahan orbit satelit, dll. Metode DGPS ini memiliki ketelitian cukup tinggi sampai level centimeter, namun untuk menggunakan nya, setiap orang/ perusahaan harus membayar kepada perusahaan yang memberikan jasa pelayanan DGPS diantaranya C-NAV dan VERIPOS. Menggunakan metode DGPS ini, dimanapun posisi kapal berada, kita bisa langsung mendapatkan koordinat kapal secara teliti. Koordinat bisa dalam informasi Latitude longitude,bisa juga dalam sistem koordinat lokal tergantung yang diinginkan diperhatikan Datum, elipsoid, Spheroid Kosep pengukuran kedalaman pada Echosounder Untuk pengukuran kedalaman, sensor yang digunakan adalah Transducer. Tranducer ini dapat ditaruh di samping kapal dan berada dibawah permukaan air. Sensor ini cukup sensitif, karena ada buble sedikit saja, sinyal yang dipancarkan sudah terganggu. Sehingga kita perlu mengatur speed kapal sedemikian rupa agar Tranducer masih dapat membaca nilai kedalaman Biasanya kecepatan kapal 3 – 6 Knot saja. Tranducer memancarkan sinyal akustik ke bawah permukaan laut. Sebenarnya prinsipnya hampir sama seperti pengukuran jarak menggunakan total station. Rumusnya Jarak = Kecepatan gelombang x Waktu/2.. Kenapa dibagi 2?? Karena jarak yang ditempuh kan bolak balik, jadi dibagi 2 supaya jarak one way saja yang didapatkan. Jika kita mengoperasikan alat Echosounder. Ada beberapa parameter yang perlu kita inputkan ke dalam echosounder, diantaranya a. Draft Jarak antara permukaan air dengan ujung sensor tranducer paling bawah. b. Velocity Cepat rambat gelombang. c. Index Nilai koreksi kedalaman. Setiap kali sebelum melakukan pengukuran batimetri kedalaman dasar laut, kita harus melakukan kalibrasi Barcheck.. Prinsip kerjanya sederhana saja, pertama kita ukur draft jarak permukaan air ke sensor , kemudian kita inputkan ke dalam echosounder, setelah itu barcheck kita taruh di kedalaman 1 meter dekat dengan sensor tranducer . Logikanya kan seharusnya pada barcheck 1 meter, angka yang dibaca di echosounder juga 1 m…Namun biasanya tidak 1 meter, tetapi 1,2 meter atau lebih… Nah karena itu.. Kita harus merubah parameter Velocity dan Indeks sedemikian rupa sampai kedalaman pada barcheck 1 meter,dan angka yang dibaca echosounder juga 1 meter… NB Velocity dipengaruhi oleh tekanan air, temperature, salinitas air, dll. Contoh, pada daerah sungai, biasanya velocity seputaran 1520 – 1530.. Namun tiap daerah, besar velocity berbeda beda. Untuk mendapatkan nilai Velocity secara teliti, diperlukan pengukuran menggunakan CTD, sedangkan untuk keperluan praktis, cukup menggunakan adjust barcheck saja. Dalam melakukan survey batimetri memang harus dilakukan dengan teliti dan juga cermat bahkan tidak boleh sembarangan. Itu sebabnya memilih jasa Survey hidrografi dan pemetaan bathymetric adalah pilihan yang tepat. Dimana sebuah jasa survey batimetri biasanya sudah memiliki tim yang profesinoal dan ahli dalam bidang nya. Untuk bisa mendapatkan hasil peta batimetri yang sesuai dengan syarat kualitas yang baik. Maka dalam kegiatan survey batimetri harus berpedoman pada standar minimum ketelitian dan international hydrographic organization IHO. Oleh sebab itu jika anda sedang membutuhkan survey batimetri. Pastikan jika anda memilih sebuah jasa survey bathimetri yang tepat. kini banyaknya Jasa survey batimetri yang menawarkan layanan survey tersebut. pastinya belum tentu memiliki kualitas hasil yang sama. Oleh sebab itu sebagai klien harus lebih teliti, akan lebih baik cermat lah dalam memilih sebuah jasa survey batimetri yang tepat. Agar nantinya anda bisa mendapatkan hasil yang memuaskan dan juga mendapatkan harga survey batimetri yang tepat dan sesuai agar tidak repot mencari jasa yang tepat. Perlu diketahui dalam melakukan survey batimetri ini ada tiga kegiatan yang utama dan harus dilakukan. Yakni seperti penentuan posisi, kedalaman hingga pasang surut untuk koreksi kedalaman. Jika anda masih bingung. Maka simak beberapa penjelasan mengenai kegiatan yang seringkali di lakukan saat Survey hidrografi dan pemetaan bathymetric berikut ini 1. Penentuan posisi Pertama, dalam penentuan posisi digunakan untuk mengetahui posisi titik yang diketahui kedalamannya. Biasanya penentuan posisi di laut ini akan menggunakan sebuah GPS. Nah alat GPS ini merupakan sistem satelit navigasi dan penentuan posisi yang dimiliki dan di kelola oleh Amerika Serikat. Menggunakan GPS dilakukan untuk memberikan posisi dan kecepatan 3 dimensi serta untuk memberikan sebuah informasi mengenai waktu secara kontinyu di seluruh dunia yang tidak bergantung waktu dan juga cuaca kepada banyak orang secara simultan. Dalam prinsip dasar penentuan posisi dengan menggunakan GPS ini merupakan pengukuran jarak ke beberapa satelit yang telah diketahui koordinatnya sekaligus secara simultan. Untuk implementasi GPS ini menjadi salah satu dalam bidang survey hidro oseanografi yang terkait dengan penentuan posisi titik titik kontrol pada pantai, navigasi kapal survey, penentuan posisi titik titik perum dan lain sebagainya. 2. Pengukuran kedalaman Kedua, dalam pengukuran kedalaman pada survei batimetri ini dilakukan pada titik titik yang di pilih untuk mewakili keseluruhan daerah yang dipetakan. Pada titik titik ini pula dilakukan sebuah penentuan posisi. Adapun titik titik tersebut adalah titik fiks perum. Pada titik fiks perum ini juga akan dilakukan sebuah pencatatan waktu saat dilakukan pengukuran kedalaman untuk koreksi pasut pada hasil pengukuran. Dalam melakukan pengukuran tersebut ada beberapa metode yang bisa digunakan seperti metode akustik, metode mekanik dan metode optik. Survei bathymetri di laut 3. Pengamatan pasut Ketiga, dalam melakukan kegiatan survey batimetri yakni dengan pengamatan pasut yang digunakan untuk mengkoreksi hasil dari pengukuran kedalaman dan untuk prediksi pasang surut di masa mendatang di saat dan juga tempat tertentu. Pengamatan pasut ini dilakukan dengan melakukan pencatatan atau merekam data ketinggian muka air laut pada setiap interval waktu tertentu. Umumnya setiap 15,30 hingga 60 menit. Rentang waktu pengamatan pasut yang lazim dilakukan adalah sekitar 15 ataupun 30 hari. Dalam melakukan pengamatan pasut ada beberapa cara yang bisa di gunakan yakni manual dan otomatik. Untuk cara manual tentunya dengan memakai palem, tinggi muka air laut setiap interval pengamatan diamati secara manual oleh operator pencatat. Sedangkan metoda otomatik, menggunakan alat pengamat pasut mekanik yang dikenal tide gauge. Gerakan naik turunnya air laut dideteksi dengan sebuah pelampung yang digantungkan pada kawat baja. Sehingga perubahan tinggi muka laut terekam pada kertas perekam data yang telah disediakan. Peralatan survey Peralatan survei yang diperlukan pada pengukuran batimetri adalah 1. GPS Echo Sounder dan perlengkapannya. Alat ini mempunyai fasilitas GPS Global Positioning System yang memberikan posisi alat pada kerangka horisontal dengan bantuan satelit. Dengan fasilitas ini, kontrol posisi dalam kerangka horisontal dari suatu titik tetap di darat tidak lagi diperlukan. Selain fasilitas GPS, alat ini mempunyai kemampuan untuk mengukur kedalaman perairan dengan menggunakan gelombang suara yang dipantulkan ke dasar perairan. 2. Notebook, satu unit portable computer diperlukan untuk menyimpan data yang di download dari alat GPS Echo Sounder. 3. Perahu digunakan untuk membawa surveyor dan alat-alat pengukuran menyusuri jalur jalur sounding yang telah ditentukan. Dalam operasinya, perahu tersebut harus memiliki beberapa kriteria, antara lain  Perahu harus cukup luas dan nyaman untuk para surveyor dalam melakukan kegiatan pengukuran dan downloading data dari alat ke komputer, dan lebih baik tertutup dan bebas dari getaran mesin.  Perahu harus stabil dan mudah bermanuver pada kecepatan rendah.  Kapasitas bahan bakar harus sesuai dengan panjang jalur sounding. 4. Papan duga. Papan duga digunakan pada kegiatan pengamatan fluktuasi muka air di laut. 5 Peralatan keselamatan. Peralatan keselamatan yang diperlukan selama kegiatan survei dilakukan antara lain life jacket. Related articles Survei bathymetri di laut UvxpOL.
  • m738fz1eg2.pages.dev/116
  • m738fz1eg2.pages.dev/362
  • m738fz1eg2.pages.dev/518
  • m738fz1eg2.pages.dev/231
  • m738fz1eg2.pages.dev/394
  • m738fz1eg2.pages.dev/546
  • m738fz1eg2.pages.dev/105
  • m738fz1eg2.pages.dev/432
  • echosounder adalah peralatan yang digunakan untuk mengukur